Exploiting Qualitative Knowledge in the Learning of Conditional Probabilities of Bayesian Networks

نویسندگان

  • Frank Wittig
  • Anthony Jameson
چکیده

Algorithms for learning the conditional proba­ bilities of Bayesian networks with hidden vari­ ables typically operate within a high-dimensional search space and yield only locally optimal so­ lutions. One way of limiting the search space and avoiding local optima is to impose quali­ tative constraints that are based on background knowledge concerning the domain. We present a method for integrating formal statements of qual­ itative constraints into two learning algorithms, APN and EM. In our experiments with synthetic data, this method yielded networks that satisfied the constraints almost perfectly. The accuracy of the learned networks was consistently superior to that of corresponding networks learned without constraints. The exploitation of qualitative con­ straints therefore appears to be a promising way to increase both the interpretability and the accu­ racy of learned Bayesian networks with known structure. If you don 't know where you're going, you might wind up someplace else. -Yogi Berra

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Exploiting Monotonicity via Logistic Regression in Bayesian Network Learning

An important challenge in machine learning is to find ways of learning quickly from very small amounts of training data. The only way to learn from small data samples is to constrain the learning process by exploiting background knowledge. In this report, we present a theoretical analysis on the use of constrained logistic regression for estimating conditional probability distribution in Bayesi...

متن کامل

Rethinking the Learning of Belief Network Probabilities

Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowle...

متن کامل

Developing an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects

Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...

متن کامل

Inference in Bayesian Networks :

Three kinds of independence are of interest in the context of Bayesian networks, namely conditional independence, independence of causal in uence, and context-speci c independence. It is well-known that conditional independence enables one to factorize a joint probability into a list of conditional probabilities and thereby renders inference feasible. It has recently been shown that independenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000